Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Placenta ; 117: 161-168, 2022 01.
Article in English | MEDLINE | ID: covidwho-1557002

ABSTRACT

The emergence of COVID-19 has created a major health crisis across the globe. Invasion of SARS-CoV-2 into the lungs causes acute respiratory distress syndrome (ARDS) that result in the damage of lung alveolar epithelial cells. Currently, there is no standard treatment available to treat the disease and the resultant lung scarring is irreversible even after recovery. This has prompted researchers across the globe to focus on developing new therapeutics and vaccines for the treatment and prevention of COVID-19. Mesenchymal stem cells (MSCs) have emerged as an efficient drug screening platform and MSC-derived organoids has found applications in disease modeling and drug discovery. Perinatal tissue derived MSC based cell therapies have been explored in the treatment of various disease conditions including ARDS because of their enhanced regenerative and immunomodulatory properties. The multi-utility properties of MSCs have been described in this review wherein we discuss the potential use of MSC-derived lung organoids in screening of novel therapeutic compounds for COVID-19 and also in disease modeling to better understand the pathogenesis of the disease. This article also summarizes the rationale behind the development of MSC-based cell- and cell-free therapies and vaccines for COVID-19 with a focus on the current progress in this area. With the pandemic raging, an important necessity is to develop novel treatment strategies which will not only alleviate the disease symptoms but also avoid any off-target effects which could further increase post infection sequelae. Naturally occurring mesenchymal stem cells could be the magic bullet which fulfil these criteria.


Subject(s)
Amnion/cytology , COVID-19/therapy , Mesenchymal Stem Cells , Placenta/cytology , SARS-CoV-2 , Umbilical Cord/cytology , COVID-19 Vaccines , Cell- and Tissue-Based Therapy , Exosomes/transplantation , Female , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/ultrastructure , Pregnancy , SARS-CoV-2/immunology , Wharton Jelly/cytology
2.
Stem Cell Res Ther ; 12(1): 155, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1112452

ABSTRACT

A new coronavirus respiratory disease (COVID-19) caused by the SARS-CoV-2 virus, surprised the entire world, producing social, economic, and health problems. The COVID-19 triggers a lung infection with a multiple proinflammatory cytokine storm in severe patients. Without effective and safe treatments, COVID-19 has killed thousands of people, becoming a pandemic. Stem cells have been suggested as a therapy for lung-related diseases. In particular, mesenchymal stem cells (MSCs) have been successfully tested in some clinical trials in patients with COVID-19. The encouraging results positioned MSCs as a possible cell therapy for COVID-19. The amniotic membrane from the human placenta at term is a valuable stem cell source, including human amniotic epithelial cells (hAECs) and human mesenchymal stromal cells (hAMSCs). Interestingly, amnion cells have immunoregulatory, regenerative, and anti-inflammatory properties. Moreover, hAECs and hAMSCs have been used both in preclinical studies and in clinical trials against respiratory diseases. They have reduced the inflammatory response and restored the pulmonary tissue architecture in lung injury in vivo models. Here, we review the existing data about the stem cells use for COVID-19 treatment, including the ongoing clinical trials. We also consider the non-cellular therapies that are being applied. Finally, we discuss the human amniotic membrane cells use in patients who suffer from immune/inflammatory lung diseases and hypothesize their possible use as a successful treatment against COVID-19.


Subject(s)
Amnion/cytology , COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Stem Cells/cytology , Clinical Trials as Topic , Female , Humans , Inflammation , Mesenchymal Stem Cells/cytology , Placenta/cytology , Pregnancy , Risk
SELECTION OF CITATIONS
SEARCH DETAIL